49 research outputs found

    Persistence of Epigenomic Effects After Recovery From Repeated Treatment With Two Nephrocarcinogens

    Get PDF
    The discovery of the epigenetic regulation of transcription has provided a new source of mechanistic understanding to long lasting effects of chemicals. However, this information is still seldom exploited in a toxicological context and studies of chemical effect after washout remain rare. Here we studied the effects of two nephrocarcinogens on the human proximal tubule cell line RPTEC/TERT1 using high-content mRNA microarrays coupled with miRNA, histone acetylation (HA) and DNA methylation (DM) arrays and metabolomics during a 5-day repeat-dose exposure and 3 days after washout. The mycotoxin ochratoxin A (OTA) was chosen as a model compound for its known impact on HA and DM. The foremost effect observed was the modulation of thousands of mRNAs and histones by OTA during and after exposure. In comparison, the oxidant potassium bromate (KBrO3) had a milder impact on gene expression and epigenetics. However, there was no strong correlation between epigenetic modifications and mRNA changes with OTA while with KBrO3 the gene expression data correlated better with HA for both up- and down-regulated genes. Even when focusing on the genes with persistent epigenetic modifications after washout, only half were coupled to matching changes in gene expression induced by OTA, suggesting that while OTA causes a major effect on the two epigenetic mechanisms studied, these alone cannot explain its impact on gene expression. Mechanistic analysis confirmed the known activation of Nrf2 and p53 by KBrO3, while OTA inhibited most of the same genes, and genes involved in the unfolded protein response. A few miRNAs could be linked to these effects of OTA, albeit without clear contribution of epigenetics to the modulation of the pathways at large. Metabolomics revealed disturbances in amino acid balance, energy catabolism, nucleotide metabolism and polyamine metabolism with both chemicals. In conclusion, the large impact of OTA on transcription was confirmed at the mRNA level but also with two high-content epigenomic methodologies. Transcriptomic data confirmed the previously reported activation (by KBrO3) and inhibition (by OTA) of protective pathways. However, the integration of omic datasets suggested that HA and DM were not driving forces in the gene expression changes induced by either chemical

    Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases

    Get PDF
    Toxicological responses to chemical insult are largely regulated by transcriptionally activated pathways that may be independent, correlated and partially or fully overlapping. Investigating the dynamics of the interactions between stress responsive transcription factors from toxicogenomic data and defining the signature of each of them is an additional step toward a system level understanding of perturbation driven mechanisms. To this end, we investigated the segregation of the genes belonging to the three following transcriptionally regulated pathways: the AhR pathway, the Nrf2 pathway and the ATF4 pathway. Toxicogenomic datasets from three projects (carcinoGENOMICS, Predict-IV and TG-GATEs) obtained in various experimental conditions (in human and rat in vitro liver and kidney models and rat in vivo, with bolus administration and with repeated doses) were combined and consolidated where overlaps between datasets existed. A bioinformatic analysis was performed to refine pathways' signatures and to create chemical activation capacity scores to classify chemicals by their potency and selectivity of activation of each pathway. With some refinement such an approach may improve chemical safety classification and allow biological read across on a pathway level

    The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast

    Get PDF
    In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites

    Application of integrated transcriptomic, proteomic and metabolomic profiling for the delineation of mechanisms of drug induced cell stress

    Get PDF
    International audience; High content omic techniques in combination with stable human in vitro cell culture systems have the potential to improve on current pre-clinical safety regimes by providing detailed mechanistic information of altered cellular processes. Here we investigated the added benefit of integrating transcriptomics, proteomics and metabolomics together with pharmacokinetics for drug testing regimes. Cultured human renal epithelial cells (RPTEC/TERT1) were exposed to the nephrotoxin Cyclosporine A (CsA) at therapeutic and supratherapeutic concentrations for 14 days. CsA was quantified in supernatants and cellular lysates by LC-MS/MS for kinetic modeling. There was a rapid cellular uptake and accumulation of CsA, with a non-linear relationship between intracellular and applied concentrations. CsA at 15 µM induced mitochondrial disturbances and activation of the Nrf2-oxidative-damage and the unfolded protein-response pathways. All three omic streams provided complementary information, especially pertaining to Nrf2 and ATF4 activation. No stress induction was detected with 5 µM CsA; however, both concentrations resulted in a maximal secretion of cyclophilin B. The study demonstrates for the first time that CsA-induced stress is not directly linked to its primary pharmacology. In addition we demonstrate the power of integrated omics for the elucidation of signaling cascades brought about by compound induced cell stress

    The molecular and cellular aspects of arthritis due to alphavirus infections

    No full text
    Alphaviruses such as the Sindbis-group viruses, Scandinavian Ockelbo virus, the African Asian chikungunya virus, the African O'nyong-nyong virus, the South American Mayaro virus, and the Australasian Barmah Forest and Ross River viruses, are commonly associated with outbreaks of acute and persistent arthritis and arthralgia in humans. The mechanisms by which these viruses cause arthritis/arthralgia are poorly understood. This chapter summarizes our current understanding of viral arthritides using our newly developed mouse model of Ross River virus-induced joint and muscle inflammation.No Full Tex

    Comparison of human recombinant protein coatings and fibroblast-ECM to Matrigel for induced pluripotent stem cell culture and renal podocyte differentiation

    No full text
    Human induced pluripotent stem cells (hiPSC) offer great opportunities within the 3R framework. In the field of toxicology, they may contribute greatly to the reduction and eventually replacement of animal models. However, culturing hiPSC as well as the differentiation of hiPSC into target cells that are used for toxicity testing, mainly depend on the presence of extracellular matrix (ECM) coatings. The most widely used ECM coating is Matrigel, an animal product that is derived from mice sarcomas. Drawbacks of Matrigel are widely recognized and include batch-to batch variations, usage of animal rather than human material and ethical concerns for its production. While alternative coatings exist, factors such as higher cost and limited characterizations may hinder a broader uptake by the scientific community. Here, we report an extensive comparison of three commercial human ECM coatings, vitronectin, laminin-511 and laminin-521, to Matrigel in three different hiPSC lines in long term culture (< 9 passages). Characterization included expression of pluripotent markers in a genome-wide transcriptomics study (TempO-Seq), capacity to differentiate into embryoid bodies and karyotype stability by analyzing copy number variations by shallow DNA sequencing. Furthermore, a low-cost alternative, decellularized ECM produced by human neonatal dermal fibroblasts was analyzed. In addition, all alternative coatings were tested for hiPSC differentiation into renal podocyte-like cells in a genome-wide transcriptomics screen. Our results showed that all tested coatings were highly comparable to the animal-derived Matrigel for both hiPSC maintenance and differentiation into renal podocyte-like cells. Furthermore, decellularized fibroblast ECM could be a novel attractive low-cost coating
    corecore